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Abstract

In this paper lower and upper bounds for the number of support vectors are derived
for support vector machines (SVMs) based on ¢hesensitive loss function. It
turns out that these bounds are asymptotically tight under mild assumptions on the
data generating distribution. Finally, we briefly discuss a trade-offbetween
sparsity and accuracy if the SVM is used to estimate the conditional median.

1 Introduction

Given a reproducing kernel Hilbert space (RKHS) of a kefnel X x X — R and training set
D = ((z1,y1)s-- -, (Tn,yn)) € (X x R)", the e-insensitive SVM proposed by Vapnik and his
co-workers|[[1D[ 1/1] for regression tasks finds the unique minimfzeyr € H of the regularized
empirical risk

M+ -3 Ly £ @
=1

where L. denotes the-insensitive loss defined b, (y, t) := max{0,|y — t| — ¢} forally,t € R
and some fixed > 0. Itis well known, see e.g. [2, Proposition 6.21], that the solution is of the form

for=>_ Bik(xi ), (2)
i=1
where the coefficient8 are a solution of the optimization problem

maximize > ;B —e > [8i] - 3 > BiBjk(wi, ;) 3)
=1 =1 1,0=1
subjectto -C <3, <C foralli=1,...,n. (4)

Here we seC := 1/(2An). Note that the equality constrait’._; 5, = 0 needed in[2, Proposition
6.21] is superfluous since we do not include an offset terim the primal problem[{1). In the
following, we write SV (fp ) := {i : 8 # 0} for the set of indices that belong to the support
vectors offp ». Furthermore, we writg# for the counting measure, and heggé8V (fp, ») denotes
the number of support vectors 6 ».

It is obvious from ) that#SV (fp,») has a crucial influence on the time needed to compute
fp.a(z). Due to this fact, the-insensitive loss was originally motivated by the goal to achieve
sparsedecision functions, i.e., decision functioffis » with #SV (fp.x) < n. Although empiri-

cally it is well-known that thes-insensitive SVM achieves this sparsity, there is, so far, no theo-
retical explanation in the sense 0f [5]. The goal of this work is to provide such an explanation by
establishing asymptotically tight lower and upper bounds for the number of support vectors. Based
on these bounds we then investigate the trade-off between sparsity and estimation accuracy of the
e-insensitive SVM.



2 Main results

Before we can formulate our main results we need to introduce some more notations. To this end,
let P be a probability measure ok x R, whereX is some measurable space. Given a measurable

[ X — R, we then define thé -risk of f by R, p(f) := Ez,y)~pLe(y, f(x)). Moreover, recall

that P can be split into the marginal distributidhy on X and the regular conditional probability
P(-|z). Given a RKHSH of a bounded kerndl, [1]] then showed that

foo i=arg il A|fI +Reo(f)

exists and is uniquely determined whene®f, p(0) < oo. Let us writed, ) for the Dirac
measure at some;, y) € X x R. By considering the empirical measube = % >y Oy ) OF @
training setD = ((z1,91),-- ., (zn,yn)) € (X x R)", we then see that the correspondifigy is
the solution of[(lL). Finally, we need to introduce the sets

A (f) = {(my) € X xR:|f(x) —y| > e+ 6}
Aﬁp(f) = {(x,y)GXXR:\f(x)—y|26—5},

wheref : X — R is an arbitrary function andl € R. Moreover, we use the short forms, (f) :=
A (f)and Ay, (f) == A9, (f). Now we can formulate our first main result.

Theorem 2.1 LetP be a probability measure oN x IR and H be a separable RKHS with bounded
measurable kernel satisfyinjk| .. < 1. Then, foralln > 1, p > 0,6 > 0, andX > 0 satisfying
dA < 4, we have

P (D € (X xR)": w - P(AfOW(fP,,\)) - P) >1- 367521}\62n — %'
and
SV 2725 2
P"(D e(X xR)": W < P(A% (fr) +p) >1—38e "ot — e

Before we present our second main result, we briefly illustrate Theforgm 2.1 for the case where we
fix the regularization parametarand letn — oo.

Corollary 2.2 LetP be a probability measure o x R and H be a separable RKHS with bounded
measurable kernel satisfyind |, < 1. Then, for allp > 0 and > 0, we have

< #SV (fp)

lim P" (D € (X xR)": P(Aow(fp ) — p 0

n—oo

< P(Aup(fr)) +0) = 1.

Note that the above corollary exactly describes the asymptotic behavior of the fraction of support
vectors modulo the probability of the set

Awp(fer)\Alow(frpa) = {(z, foa(z) —€) iz € X} U{(z, for(x) +€) i€ X}.

In particular, if the conditional distributiori®( - |z), z € X, have no discrete components, then the
above corollary gives an exact description.

Of course, in almost no situation it is realistic to assume Xrstays fixed if the sample sizegrows.
Instead, it is well-known, se&l[1], that the regularization parameter should vanish in order to achieve
consistency. To investigate this case, we need to introduce some additional notatiorid from [6] that
are related to thé.-risk. Let us begin by denoting the Bayés-risk by R} p := inf R p(f),
whereP is a distribution and the infimum is taken over all measurable functfons — R. In
addition, given a distributiof) on R, [6] and [7, Chapter 3] defined thener L.-risksby

Croqlt) = /}R Le(y. 1) dQy) . tER,

and theminimal innerL.-riskswere denoted b;ZzﬁQ = infier Cr. q(t). Obviously, we have

Ri.p(f) = /X Cr. 1) (f(2)) dPx (), (5)
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and [6, Lemma 2.5], see alsdl [7, Lemma 3.4], further established the intuitive fojula =
Jx Ci. p(. sy @Px (z). Moreover, we need the setsadnditional minimizers

M*(x) = {t € ]R, N CLE,P(, ‘1)(t) = CZS,P(IT)}'

The following lemma collects some useful properties of these sets.

Lemma 2.3 Let P be a probability measure oX x R with R} p < co. ThenM*(z) is a non-
empty and compact interval féty -almost allz € X.

Given a functionf : X — R, Lemmg 2.B shows that fdt x-almost allz € X there exists a unique
t*(x) € M*(x) such that

[t*(z) — f(x)| < |t = f(2)] forallt € M*(x). (6)

In other words*(x) is the element ilM*(z) that has the smallest distanceftor). In the follow-
ing, we sometimes writ€ (x) := t*(x) if f = fp » and we wish to emphasize the dependence of
t*(z) on A. With the help of these elements, we finally introduce the sets

MEL(f) = {(@y) € X xR: [0 (@) —y| > +5)
ML) = {(@y) e X xR: |"(@) —y| = ¢~}

whered € R. Moreover, we again use the short forbg, (f) = M (f) and My, (f) =
M, (f). Now we can formulate our second main result.

Theorem 2.4 LetP be a probability measure o x IR and H be a separable RKHS with bounded
measurable kernel satisfying||.c < 1. Assume thaRR;_p(0) < oo and thatH is dense in
L1(Px). Then, for allp > 0, there exist &, > 0 and aX, > 0 such that for all\ € (0, A,] and all

n > 1 we have

< #SV(fp.a)

P"(D € (X xR)™ : P(Miow (fo.0)) — p -

< P(Mup(fP,,\)) —|—p> >1 _ge 0NN

If we choose a sequence of regularization parametgsich that\,, — 0 andA2n — oo, then the
resulting SVM isL.-risk consistent under the assumptions of Thedrerh 2.4 $ee [1]. For this case,
the following obvious corollary of Theorefn 2.4 establishes lower and upper bounds on the number
of support vectors.

Corollary 2.5 LetP be a probability measure oR x R and H be a separable RKHS with bounded
measurable kernel satisfyintk||.o < 1. Assume thaR;_p(0) < oo and thatH is dense in
Ly (Px). Furthermore, le{\,,) € (0, 00) be a sequence with,, — 0 and\2n — oo. Then, for all

p > 0, the probabilityP™ of D € (X x R)™ satisfying

1imian(M10w(fp7,\m)) -p< M < limsupP(Mup(fp,Am)) +p

m—00 n m— oo

converges td for n — oo.

In general, the probabilities of the seté,..(fp,») and M, (fp,1) are hard to control since, e.g.,

for fixed z € X and\ — 0 it seems difficult to show thafp »(z) is not “flipping” from the left

hand side ofM*(z) to the right hand side. Indeed, for genefal*(x), such flipping would give
different valuess (z) € M*(z) for A — 0, and hence would result in significantly different sets
Mow(fr,x) @andM,,(fp.n). As a consequence, it seems hard to show that, for probability measures
P whose conditional distributior8( - |x), z € X, have no discrete components, we always have

lim inf P (Miow (fp,2)) = limsup P(Muy(fe 1)) - @)
- A—0

However, there are situations in which this equality can easily be established. For example, assume
that the sets\1*(x) areP x-almost surely singletons. In this cagg(z) is in factindependenof A,
and hence so a®j., (fp,n) andM,,(fp,»). Namely, in this case these sets contain the fairg)



for whichy is notcontained in the closed or opeitube around\*(z), respectively. Consequently,

(7 holds provided that the conditional distributidRé- |z), = € X, have no discrete components,
and hence Corollary 2.5 gives a tight bound on the number of support vectors. Moreover, if in
this case we additionally assume= 0, i.e., we consider the absolute loss, then we easily find
P(Mow(fr,2)) = P(Myp(fp,a)) = 1, and hence Corollafy 2.5 shows that the corresponding SVM
doesnottend to produce sparse decision functions. Finally, recall that for this specific loss function,
M*(z) equals the median d?( - |z), and henceM*(z) is a singleton whenever the median of
P(-|x) is unique.

Let us now illustrate Corollary 2.5 for > 0. To this end, we assume in the following that the
conditional distribution®( - |z) aresymmetrici.e., for P x-almost allz € X there exists a&on-
ditional centerc(z) € R such thatP(c¢(x) + A|z) = P(c(z) — Alx) for all measurabled C R.
Note that by consideringl := [0, c0) it is easy to see thaf(x) is a median ofP( - |z). Further-
more, the assumptioR ;, p(0) < oo imposed in the results above ensures that the conditional
meanf}(z) := E(Y|z) of P( - |z) existsP x-almost surely, and from this it is easy to conclude that
c(x) = fi(x) for Px-almost allz € X. Moreover, from[[8, Proposition 3.2 and Lemma 3.3] we
immediately obtain the following lemma.

Lemma 2.6 LetP be a probability measure oA x R such thatR;_p(0) < co. Assume that the
conditional distributionsP( - |z), z € X, are symmetric and that fdP x-almost allz € X there
exists a(z) > 0 such that for all§ € (0, §(z)] we have

P(f5(x) 4+ [-6,0]]z) > O, (8)
P(fp(z)+[e—d,e+6]jz) > 0. 9)

Then, forP x-almost allz € X, we haveM*(z) = {f5(z)} and fi(x) equalsP x-almost surely
the unique median d*( - |x).

Obviously, condition[(B) means that the conditional distributions have some mass around their me-
dian f3, wheread (9) means that the conditional distributions have some mass gfoitred More-

over, [&] showed that under the assumptions of Lefnma 2.6, the corresperidsensitive SVM can

be used to estimate the conditional median. Let us now illustrate how the valueflolences both

the accuracy of this estimate and the sparsity. To this end, let us assume for the sake of simplicity
that the conditional distributiori3( - |=) havecontinuoud_ebesgue densitigs - |z) : R — [0, c0).

By the symmetry of the conditional distributions it is then easy to see that these densities are sym-
metric aroundf(x). Now, it follows from the continuity of the densities, that (8) is satisfied if
p(fi(z)|x) > 0, whereas|(9) is satisfiedif /5 () + €[x) > 0. Let us first consider the case where

the conditional distributions are equal modulo translations. In other words, we assume that there
exists a continuous Lebesgue dengity R — [0, o) which is symmetric around 0 such that for

P x-almost allx € X we have

q(y) = p(fp(x) +ylx), y € R.
Note that this assumption is essentially identical to a classical “signal plus noise” assumption. In
the following we further assume thatis unimodal, i.e.g has its only local and global maximum
at0. From this we easily see thdt|(8) is satisfied, grid (9) is satisfig¢t)f > 0. By Lemma
[2.§ and the discussion arourid (7) we then conclude that under the assumptions of Cordllary 2.5
the fraction of support vectors asymptotically approact@§le, oc)), whereQ is the probability
measure defined by. This confirms the intuition thdarger values ofc lead to sparser decision
functions.In particular, ifQ([e, c0)) = 0, the corresponding SVM producesper sparselecision
functions, i.e., decision functions whose number of support vectors rimegow linearly in the
sample size. However, not surprisingly, there is a price to be paid for this sparsity. Indeed, [8,
Lemma 3.3] indicates that the size gffc) has a direct influence on the ability @f » to estimate
the conditional mediarfs. Let us describe this in a little more detail. To this end, we first find by
[8, Lemma 3.3] and the convexity of— Cj_ q(t) that

. t2/9 ifte[0,e
Cr.q(t) = Cr, q = ale) - {te/— /2 ift> [6 |

By a literal repetition of the proof of [8, Theorem 2.5] we then find the self-calibration inequality

1f = Folleaer) < V2Ialy/Re,p(f) — R, o (10)

4



which holds for allf : X — R with Rz, p(f) — R}, p < €/2. Now, if we are in the situation

of Corollary, then we know th& ., p(fp,»,) — Rj_p in probability forn — oo, and thus

) shows thalfp », approximates the conditional medigf with respect to thel, (P x )-norm.
However, the guarantee for this approximation becomes worse the sialldrecomes, i.e., the
largere is. In other wordsthe sparsity of the decision functions may be paid by less accurate
estimates of the conditional media@n the other hand, our results also show thaterate values

for e can lead to both reasonable estimates of the conditional median and relatively sparse decision
functions. In this regard we further note that one can also use [8, Lemma 3.3] to establish self-
calibration inequalities that measure the distancg @ f only up toe. In this case, however, it

is obvious that such self-calibration inequalities are worse the larggrand hence the informal
conclusions above remain unchanged.

Finally, we like to mention that, if the conditional distributions are not equal modulo transla-
tions, then the situation may become more involved. In particular, if we are in a situation with
p(fp(@)|z) > 0andp(f(x) + ele) > 0 butint, p(f(z)|z) = inf, p(f3(z) + €lx) = 0, self-
calibration inequalities of the fornj (JLO) are in general impossible, and weaker self-calibration in-
equalities require additional assumptionskariVe refer tol[8] where the case= 0 is considered.

3 Proofs

SettingC := ﬁ and introducing slack variables, we can restate the optimization proE'em (1) as

minimize %Hfl\% + C;(& +&) 11

subjectto  f(z;) —y; <e+&,
yi — f(z) < e+ &,
£,6 >0 foralli=1,...,n.
In the following we denote the (unique) solution E](ll)(kﬁ, ¢*,£*), where we note that we have
f* = fp.a. Itis well-known, see e.g.[2, p. 117], that the dual optimization probler df (11) is

n n

maximize iyi(di — ;) — 62(071' +a;) - . Z (G — aq)(6y — oj)k(zi, z5)  (12)
=1 =1

2 -
i,=1
subjectto 0<a;, &; <C foralli=1,...,n,
wheref is the kernel of the RKHSZ. Furthermore, iflaf, a5, ..., ), &) denotes a solution of

), then we can recover the primal solutigft, £*, é*) by

n

o= ) @ —ahk(@, -, (13)
i=1
& = max{0, f*(z;) —yi — €}, (14)
? = max{0,y; — [*(x;) — €}, (15)
foralli =1,...,n. Moreover, the Karush-Kuhn-Tucker conditions[of](12) are

o (f*(z:i) —yi —e—ﬁj‘) = 0, (16)
aj(yi — fH (@) —e=&) = 0, 17)
(af —CO); = 0, (18)

(@ -0 = 0, (19)

&6 = 0, (20)

ara; = 0, (21)

wherei = 1,...,n. Finally, note that by setting, := &; — «; the problem[(IR) can be simplified
to (3), and consequently, a solutigh of (3) is of the forms* = a* — a*. The following simple
lemma provides lower and upper bounds for the set of support vectors.



Lemma 3.1 Using the above notations we have
{i:|foa(@) —wl>e} c{i: B #0} C{i:|foa(zi)—uil =€}.

Proof: Let us first prove the inclusion on the left hand side. To this end, we begin by fixing an index
i with fp a(z;) —y; > e. By fp.x = f* and [14), we then fmd* > 0 and hence[ (18) implies

o = C. From [21) we concluda = 0 and hence we havg& = & — af = —C # 0. The case

yi — fp.a(z;) > € can be shown analogously, and hence we obtam the first inclusion. In order to
show the second inclusion we fix an indiewith B; # 0. By 3f = &; — o and [2]) we then have
eithera; # 0 or &; # 0. Let us first consider the cas¢ # 0 anda; = 0. The KKT condition[(16)
together withfp » = f* implies fp x(z;) —y; —e = & and sinces; > 0 we getfp \(x;) —y; > €.

The second casg; = 0 can be shown analogously. [ ]

We further need the following Hilbert space version of Hoeffding's inequality fiom [12, Chapter 3],
see also[7, Chapter 6.2] for a slightly sharper inequality.

Theorem 3.2 Let (2, A, P) be a probability space andl be a separable Hilbert space. Moreover,
letn,...,n, : @ — H be independent random variables satisfyiyg); = 0 and||7; || < 1 for
alli=1,...,n. Then, forallr > 1and alln > 7, we have

1 < T
P(Hf . <4,/7)>1f3*7.
n;n H n/ - €

FinaIIy, we need the following theorem, sée [7, Corollary 5.10], which was essentially shown by
[13,[5,3] .

Theorem 3.3 LetP be a probability measure oN x IR and H be a separable RKHS with bounded
measurable kernel satisfyinid | .. < 1. We write® : X — H for the canonical feature map &,

i.e., ®(z):=k(-,x), z € X. Then for all\ > 0 there exists a functioh : X x R — [—1,1] such
thatforalln > 1and allD € (X x R)™ we have

| fox — fealle < A7 Eph® — Eph®||y,
whereEp denotes the empirical average with respectio

Proof of of Theoren@:ln order to show the first estimate we fixya> 0 and a\ > 0 such that

A < 4. Letr := X26%n/16 which impliesn > 7. Combining Theoren{s 3.2 ahd B.3 we then obtain
1-3¢7" < P*(De (X xR)": |Eph® — Eph®||y < 4y/7/n)

< P”(D € (X XR)": ||for— fealla < 5) . (22)

Let us now assume that we have a trainingl3et (X x R)™ such that| fp » — fp.allg < 6. Given
apair(z,y) € AL (fp.»), we then have

e+0 <|fea(@) —yl < [foa@) —yl+ [fea(x) — for(@)] < [foalz) -yl +6

by the triangle inequality anfilt||.. < 1 which implies|| - ||cc < || - ||z. In other words, we have
A (fpx) C Alow(fp.y). Consequently, Lem 1 yields

#SV (fon) = #{i: [for(@) —y| > e} > { | fea(ws) —yil > e+ 6}

Z Lag, (fon) (@i Yi) -

Combining this estimate witli (22) we then obtain

2x2n

SV
pr (D € (X X ]R) m = - ZlAlow(fP,/\)(xi7yi)) >1- 36_6 16

Moreover, Hoeffding’s inequality, see, e.gl [4, Theorem 8.1], shows

P" (D S (X X ]R Z 1A10w(fp A)(x“yl) > P(Alow(fp )\)) - P) 1-— 672/)21'7,



for all p > 0 andn > 1. From these estimates and a union bound we conclude the first inequality.

In order to show the second estimate we first observe that for trainingDsets(X x R)™ with
I fox — foalla < 6 we haved,,(fp,x) C A%, (fr.). Lemm then shows

#SV (foa) < ZlAup PERICIRTN

=1
and hencg (32) yields

5272n

SV 1<
Pn(DE(X IR) MSEZIA(EPUPA)(Z“%))217367 16
=1

Using Hoeffding’s inequality analogously to the proof of the first estimate we then obtain the second
estimate. |

Proof of of Corollary[Z.2: We first observe that we havf  (fp.\) C A% (fp.) for0 < ¢ < 6.

Let us show
U A (fer) = Atow(fr0) - (23)
6>0
Obviously, the inclusion” directly follows from the above monotonicity. Conversely, fat y) €
Alow(fp. 1) We have|f(z) — y| > e and hencef(z) — y| > € + ¢ for somed > 0, i.e., we have
shown(z,y) € AS  (fp.»). From ) we now conclude

lim P (AL, (fe.0)) = P(Aiow(fe.0)) - (24)
In addition, we haved?’ o(fpa) C A%, (fp,a) for 0 < ¢’ < 4, and it is easy to check that
() A5 (fe.x) = Aup(fe.a) - (25)
§>0

Indeed, if(z,y) € Aﬂp(fp,x) forall § > 0 we have|f(z) —y| > ¢ — ¢ forall § > 0, from which
we concludef(z) —y| > e, i.e.(z,y) € Ayp(fr »). Conversely, the inclusiors” directly follows
from the above monotonicity of the sets,,. From [2%) we then conclude

lim P (A0, (fe.)) = P(dup(fr.0)) (26)

Let us now fix a decreasing sequeriég) C (0,1) with 6, — 0 andé?n — oo. Combining [( .1)
and [26) with the estimates of Theorgm]2.1, we then obtain the assertion.

Proof of Lemmd 2.B:Since the loss functioi. is Lipschitz continuous and convex #nit is easy

to verify thatt — Cr_p(.|s)(t) is Lipschitz continuous and convex fBry-almost allz € X, and
henceM*(z) is a closed interval. In order to prove the remaining assertions it suffices to show
thatlim; .+, Cr_ p(.|2)(t) = oo for Px-almost allz € X. To this end, we first observe that
Ri.p < ooimpliesC} ., < ooforPx-almostallz € X. Letus fix such an;, aB > 0,

and a sequenc@,) C R with ¢, — —oco. By the shape of., there then exists arp, > 0 such

that L.(y,t) > 2B for all y,t € R with |y — ¢| > ro. Furthermore, there exists d&d > 0 with
P([-M, M]|z) > 1/2, and since,, — —oo there further exists an, > 1 suchthat,, < —M —r

for all n > ng. Fory € [—M, M| we thus have — t,, > ro, and hence we finally find

Copcio)= [ Lyt dPle) = B
[—M,M]
for all n > ngy. The case,, — oo can be shown analogously. [ |
For the proof of Theorein 3.4 we need the following two intermediate results.
Theorem 3.4 LetP be a probability measure o x IR and H be a separable RKHS with bounded

measurable kernel satisfyingk||.o < 1. Assume thaR,_ p(0) < oo and thatH is dense in
Li(Px). Then, for all§ > 0 andp > 0, there exists &, > 0 such that for all\ € (0, A\¢] we have

Px({z € X :|fpa(z) —t| >0 forall t e M*(z)}) <p.



Proof: SinceH is dense inL;(Px) we haveinf;cg Ry, p(f) = Ri.p by [9, Theorem 3], and
hencelimy_.o Rz, p(fr)) = RLP. Now we obtain the assertion froml [6, Theorem 3.16]. B

Lemma 3.5 LetP be a probability measure oA x IR and H be a separable RKHS with bounded
measurable kernel satisfyintk||.o < 1. Assume thaR;_p(0) < oo and thatH is dense in
Li(Px). Then, for all§ > 0 andp > 0, there exists &, > 0 such that for all\ € (0, A\¢] we have

P(MZ,(fen) < P(AY(fen)) +p and  P(M2(fpn) = P(A,(fp)) —p-
Proof: We writet} (z) for the real number defined @(6) fgfz) := fp x(x). Then we have
ME(fen) © (ME(fe) N {(2) € X x R [foa(2) — ti(2) < 5})
U{(z,y) € X xR :|fp(z) —t(z)| >4 forall ¢t(z) e M*(z)}.
Moreover, given aiz, y) € M2 (fp.) N{(z,y) € X x R : |fp(z) — t5(z)| < 6}, we find
e+20 <|tx(z) —yl < [feale) —t3(@)| + |fea(z) —yl <6+ [fealz) —yl,
i.e., we have(z,y) € A% (fp.). Estimating the probability of the remaining set by Theo@ 3.4

low

then yields the first assertion. In order to prove the second estimate we first observe that
Ao € (Ah(fen) N {(@y) € X X R |fpa(a) — ()] < 0})
U{(z,y) € X xR : |fpr(z) —t(zx)] > ¢ forall t(z) € M*(z)}.
For(z,y) € A%, (fea) N{(z,y) € X x R: |fp(z) — t}(x)| < 6} we further have

€= 0 <|[fea(@) —yl < [fea(x) — 03 (@)| + [tx(z) —y[ < 0+ [tx(z) —yl,
i.e., we have(z, y) € M2 (fp ). Again, the assertion now follows from Theorm|3.4 . u

Proof of Theoreni 2.4:Analogously to the proofs of (24) and (26), we find
T P (M (frn)) = P(Miow(fo)) — and T P(ME, (frn)) = P(Mup(fr.0)
Combining these equations with Theorem 2.1 and Lefnnja 3.5, we then obtain the assertidih.
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